A SCIENCE-BASED PROTOCOL TO SLOW OR STOP PARKINSON'S DISEASE by Dr. H. Gordon Ainsleigh, D.C. 530-878-1901 drgordon@suddenlink.net

All of the following interventions have been shown in peer-reviewed medical journal studies to either eliminate a Parkinson's promoter or add a Parkinson's inhibitor. It is important that these interventions come from studies in peer-reviewed medical journals because those journals control the validity and reliability of their content by forwarding all submissions to acknowledged experts in each particular field of science for criticism, along with recommendations for whether a study is of sufficient value for publication, is ready for publication, and what changes need to be made to improve the study. All of the studies of Parkinson's-relevant agents and activities listed below are to be found, usually with abstracts (summaries) and sometimes with full text, on the PubMed website of the National Center for Biotechnology, which is a part of the National Library of Medicine, which is one of the institutes in our U.S. National Institutes of Health. The reference number in [brackets] will take you to the correct citations in the references section following the Protocol intervention, and each one of those citations will be followed by an internet address where the abstract of the study, or the full study, can be read.

This list of interventions was initially composed in my efforts to help an old trail-running friend from Oklahoma who came down with Parkinson's about a year after he got discouraged and quit running because he could no longer finish the Vermont 100-Mile Run at age 75. (I urged him to continue running shorter distances but he didn't respond to my encouragement.) I decided to see what could be done when it got difficult to understand him on the phone, and so I started assembling this list of interventions at that time, a process that is still ongoing. When I had gathered as much science as I could on promotion and inhibition of Parkinson's I communicated the list (shorter at that time) to my friend, who, after implementing my suggestions, improved to the point where phone conversations were no longer difficult, and he experienced no progression, or minimal progression of symptoms until, in his early 90s, his wife decided that they should go into assisted living. Consequently, he lost control of his environment, food and supplements, and declined rapidly as a result of being again exposed to the agents that promote Parkinson's disease. After a while he quit answering the phone, and I presume he died shortly thereafter. More recently, another friend with very rapidly progressing Parkinson's adopted much of this protocol and reports that the progression has either greatly slowed or stopped. Experience has shown that following this protocol dramatically slows, stops or even partially reverses the progression of Parkinson's disease. There is no big money to be made with any of these interventions, and therefore no entity is financially motivated to educate the public. Consequently, you probably have not heard of any of these agents and activities as having any effect on Parkinson's disease. Simply, the public has not been informed of these scientific findings because they are too cheap. I put them together for my friend, and welcome anyone who wishes to take advantage of the work I did for him to put the brakes on their own Parkinson's. Note that the references list is not complete. I have read the studies, but am still in the process of transcribing. Please be patient.

- 1. Eliminate all contact with pesticides (insecticides, fungicides and herbicides), including natural pesticides like rotenone and pyrethrins from the chrysanthemum family of plants. Studies show more Parkinson's in agricultural workers, people drinking from wells in pesticide-intensive agricultural areas, people who use pesticides in their yards, homes and gardens, and people who live a home that is fumigated (a 5-fold increased risk.). [references 1-10, 17]
- 2. Take 40 IU of vitamin D daily for every pound of body weight. Get blood vitamin D (25-OH-D3) tested, and modify dosage as necessary to keep 25-OH-D3 between 40 & 60 nanograms/milliliter. Additionally, get non-burning full body sun exposure twice a week, or go to a tanning salon twice a week and use a tanning bed with lights that produce 3-7% ultraviolet B. Vitamin D resists the effects of Parkinson's-promoting agents. [ref 10-16]

- 3. Eliminate all dairy products, except butter, from diet. Rice and almond substitutes are quite good, and coconut frozen desserts taste even better than ice cream. Dairy protein and dairy sugar have both been shown to promote Parkinson's. [ref 9, 17-20]
- 4. Drink black tea (better) or caffeinated coffee every day, starting in early morning and continuing through mid afternoon. [ref 10, 21-24]
- 5. Drink beer and/or wine every day, starting in the morning and continuing through afternoon. Avoid evening alcohol, as it causes insomnia 4-5 hours later. [21,24-27]
- 6. Use low-dose nicotine patches every day. [ref 8]
- 7. Eat a low protein diet, similar to the diet used for kidney failure. The best approach is to eat no animal products and no soy products, but at least eliminate mammal (red) meat from the diet. [ref 9]
- 8. Eat abundantly of organic fruit and organic foliage-type green vegetables. Avoiding foods that aren't organically grown is one of the ways that Parkinson's patients can stop taking in the pesticides, herbicides, and fungicides that cause and promote Parkinson's disease. Parkinson's patients are hugely more sensitive to pesticides than normal people, and much more negatively affected.
- 9. Take daily resveratrol supplements made from Japanese knotweed. [ref 10]
- 10. Take daily extracts of Chinese knotweed (Polygonum multiflorum); alcohol extract is best. [ref 10]
- 11. Take daily supplement of ginseng extract. Cover all the bases by taking a supplement that contains all three ginsengs: American, Korean and Siberian. Be aware that method of preparation/stabilization greatly affects the effects of Korean ginseng. In cancer, red ginseng is more potent but white ginseng may be more potent with Parkinson's. Try them out one at a time and see which one makes you feel better.
- 12. Eat more raw or dry-roasted nuts regularly.
- 13. Take 1 teaspoon of turmeric spice and ½ teaspoon black pepper 3-5 times a day, every day, or take 3-5 capsules of turmeric extract with piperin per day. Piperin in pepper improves uptake.
- 14. Take 1,000 mg of niacinamide twice a day.
- 15. Take 1,000 mg of omega 3 fatty acids per day for every 20 pounds of body weight.
- 16. Rub a little DMSO somewhere on your body every day. [ref 8]
- 17. Get chiropractic care once or twice weekly.
- 18. Take 100 mcg selenium for every 50 pounds of body weight.
- 19. Get serious about exercise. Take up body-contact dancing (i.e.: tango) and/or boxing practice (no head hits). Take up walking and push the pace. Work up to 3 miles 3 times a week. Then start running. Walk until you're warmed up, run until you're tired, walk until you're rested, run until you're tired, repeat. Walk for 15 more minutes after you stop running. Exercise doesn't stop the progression of the disease, which is why I put it last, but it greatly decreases the symptoms of the disease, and gives Parkinson's patients a much better quality of life.

REFERENCES

1. Parkinson's metaanalysis shows risk raised by herbicide & insecticide exposure, but not fungicides; Environ Health Perspect 120:340–347 (2012). Is Pesticide Use Related to Parkinson Disease? Some Clues to Heterogeneity in Study Results. Marianne van der Mark,1 Maartje Brouwer,1 Hans Kromhout,1 Peter Nijssen,2 Anke Huss,1,* and Roel Vermeulen1,3,*; 1Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, the Netherlands; 2St. Elisabeth Hospital, Tilburg, the Netherlands; 3Julius Centre for Public Health Sciences and Primary Care, University Medical Centre, Utrecht, the Netherlands.

- 2. Parkinson's risk incr 61% in family members who applied pesticides vs. those who didn't. BMC Neurol. 2008 Mar 28;8:6. Pesticide exposure and risk of Parkinson's disease: a family-based case-control study. Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK. Center for Human Genetics, Duke University Medical Center, Durham, NC, USA. dana.hancock@duke.edu
- 3. Parkinsons risk increased by pesticides and herbicides in dose-response pattern; 2005 Jan;62(1):91-5. Pesticides and risk of Parkinson disease: a population-based case-control study. Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Department of Neurology, University of Washington, PO Box 359739, Seattle, WA 98104, USA. jfire@u.washington.edu
- 4. Parkinson's causation by glyphosphate (Roundup) via autophagy and apoptotic pathways. Neurotoxicol Teratol. 2012 May;34(3):344-9. Glyphosate induced cell death through apoptotic and autophagic mechanisms. Gui YX, Fan XN, Wang HM, Wang G, Chen SD. Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- 5. Parkinson's metaanalysis shows risk about doubles with pesticide exposure, farming, well water and rural residence; Environ Res. 2001 Jun;86(2):122-7. Environmental risk factors and Parkinson's disease: a metaanalysis. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Department of Public Health, Medical College of Ohio, Toledo, Ohio 43614-5809, USA.
- 6. Parkinson's; glyphosate (Roundup), dimethoate & zineb focus brain damage on Parkinson's area (substantia nigra); Ecotoxicol Environ Saf. 2009 Oct;72(7):2025-32. Effect of pesticides on cell survival in liver and brain rat tissues. Astiz M, de Alaniz MJ, Marra CA. INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120 (1900) La Plata, Argentina. camarra@atlas.med.unlp.edu.ar
- 7. Parkinsons assoc w herbicides pesticides and farming but not rural living and well water in Detroit area Neurology. 1998 May;50(5):1346-50. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
- 8. Parkinson's environmental antecedents, risk up w insecticides, fumigated house; down w cigarettes, farm residence, DMSO. Neurology 1993 Jun;43(6):1150-8. Environmental antecedents of young-onset Parkinson's disease. Butterfield PG, Valanis BG, Spencer PS, Lindeman CA, Nutt JG. Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201.
- 9. Parkinson's--genetic defects meet enviro poisons--dieldrin, banned enviro-accumul pesticide, exposure through meat and milk. Kanthasamy 2005 Neurotoxicology. 2005 Aug;26(4):701-19. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Kanthasamy AG1, Kitazawa M, Kanthasamy A, Anantharam V. Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA. akanthas@iastate.edu
- 10. Parkinson's & Alzheimer's resisted by nutraceuticals, esp vitamin D & polyphenols; Curr Pharm Des. 2012;18(1):34-42. Immunopathogenesis of neurodegenerative diseases: current therapeutic models of neuroprotection with special reference to natural products. Magrone T1, Marzulli G, Jirillo E. Department of Basic Medical Sciences, University of Bari, Bari, Italy Policlinico, P.zza G. Cesare 11, 70124 Bari, Italy. thea.magrone@libero.it

- 11. Parkinson's can be prevented and treated by Vitamin D; Mov Disord. 2007 Mar 15;22(4):461-8. Vitamin D and Parkinson's disease--a hypothesis. Newmark HL1, Newmark J. Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. pnewmark@verizon.net
- 12. Parkinson's risk 67% lower in persons with highest quartile blood vitamin D versus lowest quartile. Arch Neurol. 2010 Jul;67(7):808-11. Serum vitamin D and the risk of Parkinson disease. Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. National Institute for Health and Welfare, Helsinki, Finland. paul.knekt@thl.fi
- 13. Parkinson's patients have significantly lower serum vitamin D than Alzheimer's patients and controls; Arch Neurol. 2008 Oct;65(10):1348-52. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Source: Department of Neurology, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA 30329, USA. mevatt@emory.edu
- 14. Parkinson's—Vitamin D stimulates glial-derived neurotrophic factor in striatum of rats Sanchez 2002; Brain Res Mol Brain Res. 2002 Dec;108(1-2):143-6. 1,25-Dihydroxyvitamin D(3) increases striatal GDNF mRNA and protein expression in adult rats. Sanchez B, Lopez-Martin E, Segura C, Labandeira-Garcia JL, Perez-Fernandez R. Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain.
- 15. Parkinson's more likely with common variant of vitamin-D-receptor gene. J Korean Med Sci. 2005 Jun;20(3):495-8. Association of vitamin D receptor gene polymorphism and Parkinson's disease in Koreans. Kim JS1, Kim YI, Song C, Yoon I, Park JW, Choi YB, Kim HT, Lee KS. Department of Neurology, The Catholic University of Korea, Seoul.
- 16. Parkinson's patients have significantly lower serum vitamin D than Alzheimer's patients and controls; Arch Neurol. 2008 Oct;65(10):1348-52. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Source: Department of Neurology, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA 30329, USA. mevatt@emory.edu
- 17. Parkinson's causation by dairy and pesticides. Am J Clin Nutr. 2007 Nov;86(5):1486-94. Prospective study of dietary pattern and risk of Parkinson disease. Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A. Departments of Nutrition and Epidemiology, Boston, MA.
- 18. Parkinson's risk increased with dairy protein and dairy sugar in men but not women; Ann Neurol. 2002 Dec;52(6):793-801. Diet and Parkinson's disease: a potential role of dairy products in men. Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A. Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. hchen@hsph.harvard.edu
- 19. Parkinson's risk increased 80% in men by high dairy intake; Am J Epidemiol. 2007 May 1;165(9):998-1006. Consumption of dairy products and risk of Parkinson's disease. Chen H, O'Reilly E, McCullough ML, Rodriguez C, Schwarzschild MA, Calle EE, Thun MJ, Ascherio A. Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
- 20. Parkinson's risk increased 2.3-fold by >16 oz. milk per day vs. no milk during 45-68 ages; Neurology. 2005 Mar 22;64(6):1047-51. Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Park M1, Ross GW, Petrovitch H, White

- LR, Masaki KH, Nelson JS, Tanner CM, Curb JD, Blanchette PL, Abbott RD. Korea University Genomic Institute, College of Medicine, Korea University, Ansan-Si, Republic of Korea.
- 21. Parkinson's risk reduction with caffeine, alcohol, and tobacco. Neuroepidemiology. 2003 Sep-Oct;22(5):297-304. A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson's disease. Ragonese P, Salemi G, Morgante L, Aridon P, Epifanio A, Buffa D, Scoppa F, Savettieri G. Department of Neuropsychiatry, University of Palermo, Via Gaetano La Loggia I, IT-90129 Palermo, Italy.
- 22. Parkinson's resisted by nicotine, caffeine and black tea. Am J Epidemiol. 2008 Mar 1;167(5):553-60. Differential effects of black versus green tea on risk of Parkinson's disease in the Singapore Chinese Health Study. Tan LC, Koh WP, Yuan JM, Wang R, Au WL, Tan JH, Tan EK, Yu MC. Department of Neurology, National Neuroscience Institute, Singapore.
- 23. Parkinson's-relevant increase in rat brain dopamine with 10mg/kg caffeine Pharmacol Biochem Behav. 2014 Apr 11. pii: S0091-3057(14)00106-3. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise. Zheng X,1, Takatsu S,1, Wang H,2, Hasegawa H,3. 1,Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan. 2,College of Sports Science, Shenyang Sport University, Shenyang, China. 3,Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan. Electronic address: hasehiro@hiroshima-u.ac.jp.
- 24. Parkinson's risk reduced 40% with high intake of total flavonoids (tea, berries, apples, red wine, oranges); Neurology. 2012 Apr 10;78(15):1138-45. Habitual intake of dietary flavonoids and risk of Parkinson disease. Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA. xiang.gao@channing.harvard.edu
- 25. Parkinson's risk lowered 27% by 2 beers/day, risk increased 22-35% with 1 or more liquor; PLoS One. 2013 Jun 19;8(6):e66452. Alcohol Consumption, Types of Alcohol, and Parkinson's Disease. Liu R, Guo X, Park Y, Wang J, Huang X, Hollenbeck A, Blair A, Chen H. Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America.
- 26. Parkinson's risk reduced 30 % by beer intake; Ann Neurol. 2003 Aug;54(2):170-5. Alcohol consumption and the incidence of Parkinson's disease. Hernán MA, Chen H, Schwarzschild MA, Ascherio A. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA. miguel_hernan@post.harvard.edu
- 27. Parkinson's and Alzheimer's neuroprotection potential from wine polyphenols; Oxid Med Cell Longev. 2012;2012:805762. Epub 2012 Jul 5. Wine polyphenols: potential agents in neuroprotection. Basli A, Soulet S, Chaher N, Mérillon JM, Chibane M, Monti JP, Richard T. 1GESVAB, ISVV, Université de Bordeaux, France.
- 28. Parkinson's resisted by high-urate diet. Am J Epidemiol. 2008 Apr 1;167(7):831-8. Epub 2008 Mar 7. Diet, urate, and Parkinson's disease risk in men. Gao X, Chen H, Choi HK, Curhan G, Schwarzschild MA, Ascherio A. Department of Nutrition, School of Public Health, Harvard University, Boston, MA 02115, USA. xgao@hsph.harvard.edu
- 29. Parkinson's activity and motor skills improved by low protein diet; Nutr Neurosci. 2007 Jun-Aug;10(3-4):129-35. Diet with LPP for renal patients increases daily energy expenditure and improves motor function in parkinsonian patients with motor fluctuations. Barichella M, Savardi C, Mauri A, Marczewska A, Vairo A, Baldo C,

- Massarotto A, Cordara SE, Pezzoli G. Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy. barichella@parkinson.it.
- 30. Parkinson's prevented by high omega-3 fats in diet. FASEB J. 2008 Apr;22(4):1213-25. Epub 2007 Nov 21. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal disease. Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F.; Centre de Recherche en Endocrinologie Moléculaire et Oncologique, Centre Hospitalier de l'Université Laval, Québec, Canada.
- 31. Parkinson's 30% less w Alternate Healthy Eating Index, 25% less w Alternate Mediterranean Diet Score; Am J Clin Nutr. 2007 Nov;86(5):1486-94. Prospective study of dietary pattern and risk of Parkinson disease. Gao X1, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A. Department of Nutrition, Harvard School of Public Health, Cambridge, MA 02115, USA. xgao@hsph.harvard.edu
- 32. Parkinson's lab indices normalized by combined extracts of forty plants, including ginseng, eleutherococcus, Rhodiola; Bull Exp Biol Med. 2010 Nov;149(6):682-4. Therapeutic efficacy of the neuroprotective plant adaptogen in neurodegenerative disease (Parkinson's disease as an example). Bocharov EV, Ivanova-Smolenskaya IA, Poleshchuk VV, Kucheryanu VG, Il'enko VA, Bocharova OA. Laboratory for General Pathology of Nervous System, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences. ebocharov@rambler.ru
- 33. Parkinson's degeneration prevented by high-dose niacinamide in a Drosophila model of Parkinson's disease. J Neurosci Res. 2008 Jul;86(9):2083-90. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit. Jia H, Li X, Gao H, Feng Z, Li X, Zhao L, Jia X, Zhang H, Liu J. Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- 34. Parkinson's degen attenuated by creatine & cyclocreatine in mouse model; Exp Neurol. 1999 May;157(1):142-9. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF. Neurology Service, Massachusetts General Hospital, Boston, Massachusetts, USA.
- 35. Parkinson's, ALS, Alzheimer's and stroke neurodegeneration opposed by resveratrol acting as signaling molecule for intracellular antioxidation; Neurosignals. 2005;14(1-2):61-70. Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Doré S. Johns Hopkins University, School of Medicine, ACCM Department, Baltimore, MD 21205, USA. sdore@jhmi.edu
- 36. Parkinsonian degeneration initiated by trivalent iron selectively accumulating in zona compacta producing free radical degeneration and iron binding to melanin; Ann Neurol. 1992;32 Suppl:S105-10. Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson's disease. Ben-Shachar D, Eshel G, Riederer P, Youdim MB. Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel.
- 37. Parkinson's degen associated with non-aspirin NSAID use in 2 years before Diagnosis. BMJ. 2011 Jan 20;342:d198. doi: 10.1136/bmj.d198. Use of non-steroidal anti-inflammatory drugs and risk of Parkinson's disease: nested case-control study. Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T. Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, MA 02120, USA. jdriver@partners.org
- 38. Parkinson's patient function improved 28% by Tango dancing over 1-year period. Neurorehabil Neural Repair. 2012 Feb;26(2):132-43. Randomized controlled trial of

- community-based dancing to modify disease progression in Parkinson disease. Duncan RP, Earhart GM. Washington University in St Louis, St Louis, MO, USA.
- 39. Parkinson's improvement from Tango dancing remained 10-12 weeks post-intervention; J Mot Behav. 2013;45(6):519-29. The effects of adapted tango on spatial cognition and disease severity in Parkinson's disease. McKee KE1, Hackney ME. Department of Neurology, Massachusetts General Hospital, Cambridge.
- 40. Parkinson's not a cause of death among prostitutes in Colorado Springs during 30-years surveillance; Am J Epidemiol. 2004 Apr 15;159(8):778-85. Mortality in a long-term open cohort of prostitute women. Potterat JJ1, Brewer DD, Muth SQ, Rothenberg RB, Woodhouse DE, Muth JB, Stites HK, Brody S. El Paso County Department of Health and Environment, Colorado Springs, CO, USA.
- 41. Selenium prevents signs (DNA damage) and symptoms (bradykinesia) of early Parkinson's caused by Paraquat in rats. Nutrition. 2015 Feb;31(2):359-65. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson's disease. Ellwanger JH, Molz P, Dallemole DR, Pereira dos Santos A, Müller TE, Cappelletti L, Gonçalves da Silva M, Franke SI, Prá D, Pêgas Henriques JA. Universities of Santa Cruz and Rio Grande in Brazil.